Depolarization-induced neurite outgrowth in PC12 cells requires permissive, low level NGF receptor stimulation and activation of calcium/calmodulin-dependent protein kinase.

نویسندگان

  • M Solem
  • T McMahon
  • R O Messing
چکیده

Neuronal activity is required for normal neural development. Excessive activity can cause abnormal growth of neural processes and may contribute to formation of epileptic foci. Using PC12 cells, we investigated mechanisms by which depolarization regulates neurite growth. Depolarization with 45 mM KCl induced neurite outgrowth only if NGF receptors were partly activated by overexpression of p140trkA or by treatment with a low concentration of NGF that alone was insufficient to stimulate neurite formation. Depolarization-induced neurite growth was reduced by inhibitors of L-type Ca2+ channels, Ca2+/calmodulin-dependent protein (CaM) kinases II and IV, and transcription. These results identify a novel mechanism by which depolarizing stimuli synergize with subthreshold activation of NGF receptors to induce neurite growth through a Ca2+ and CaM kinase-dependent signal transduction pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

Small GTPase Rin induces neurite outgrowth through Rac/Cdc42 and calmodulin in PC12 cells

The novel Ras-like small GTPase Rin is expressed prominently in adult neurons, and binds calmodulin (CaM) through its COOH-terminal-binding motif. It might be involved in calcium/CaM-mediated neuronal signaling, but Rin-mediated signal transduction pathways have not yet been elucidated. Here, we show that expression of Rin induces neurite outgrowth without nerve growth factor or mitogen-activat...

متن کامل

Luteolin Induces microRNA-132 Expression and Modulates Neurite Outgrowth in PC12 Cells

Luteolin (3',4',5,7-tetrahydroxyflavone), a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132) in PC12 cells. The correlation between miR-132 knockdown and a decreas...

متن کامل

Direct activation of second messenger pathways mimics cell adhesion molecule-dependent neurite outgrowth

We present evidence that direct activation of neuronal second messenger pathways in PC12 cells by opening voltage-dependent calcium channels mimics cell adhesion molecule (CAM)-induced differentiation of these cells. PC12 cells were cultured on monolayers of control 3T3 cells or 3T3 cells expressing transfected N-cadherin in the presence of KCl or a calcium channel agonist Bay K 8644. Both pota...

متن کامل

Chronic irradiation with low-dose-rate 137Cs-γ rays inhibits NGF-induced neurite extension of PC12 cells via Ca2+/calmodulin-dependent kinase II activation

Chronic irradiation with low-dose-rate 137Cs-γ rays inhibits the differentiation of human neural progenitor cells and influences the expression of proteins associated with several cellular functions. We aimed to determine whether such chronic irradiation influences the expression of proteins associated with PC12 cells. Chronic irradiation at 0.027 mGy/min resulted in inhibition of NGF-induced n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 9  شماره 

صفحات  -

تاریخ انتشار 1995